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Abstract  

We construct a new example of 2 × 2 -matrix quasi-exactly solvable (QES) Hamiltonian which is associated 

to a potential depending on the Jacobi elliptic functions. We apply the QES analytic method in order to establish 

three necessary and sufficient algebraic conditions for the previous Hamiltonian to have an invariant vector space 

whose generic elements are polynomials.  This Hamiltonian is called quasi-exactly solvable.  
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Résumé 

 
Nous construisons un nouveau type d’hamiltonien partiellement algébrique matriciel d’ordre deux associé à un 

potentiel dépendant des fonctions elliptiques de Jacobi. Pour ce type d’hamiltonien, seule une partie de valeurs 

propres peut être déterminée algébriquement. Nous appliquons la méthode analytique de résolubilité partielle pour 

déterminer les trois conditions algébriques nécessaires et suffisantes pour que le hamiltonien matriciel de Jacobi 

laisse invariant un espace vectoriel polynômial de dimension finie. 

 

 

Mots clés: Hamiltonien Elliptique de Jacobi, Méthode Analytique de Résolubilité Partielle, Résolubilité Partielle 
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1. Introduction 
 

In quantum physics, the goal consists in 

constructing the spectrum of a linear operator 

defined on a suitable domain of Hilbert space. In 

most cases, this type of problem cannot be 

explicitly solved, in other words the eigenvalues 

of the Hamiltonian cannot be computed 

algebraically. However, in few cases, some of 

which turn out to be physically fundamental, the 

spectrum can indeed be found explicitly. The two 

major examples of this kind are the celebrated 

harmonic quantum oscillator and the hydrogen 

atom (i.e. 3-dimensional Schrödinger equation 

coupled to an external Coulomb potential). These 

examples are called exactly solvable in the sense 

that the full spectrum of the Hamiltonian is found 

explicitly. 

In the last few years, a new class of operators 

which is intermediate to exactly solvable and non 

solvable operators has been discovered (Turbiner, 

1988;  Ushveridze, 1995; Cayley, 1961; Turbiner, 

1989; Shifman & Turbiner, 1989): the quasi-

exactly solvable (QES) operators, for which a 

finite part of the spectrum can computed 

algebraically. 

Although scalar QES operators have been 

classified in one variable (González-López, et al., 

1993) and in several variables [A. González-

López, et al.,1991), a classification of matrix 

QES operators is still missing. 

More recently, interesting tools for classification 

of 22 -matrix QES operators in one spatial 

dimensional (Zhdanov, 1997; Y. Brihaye & P. 

Kosinski, 1997; Y. Brihaye et al., 2007) and in 

creation and annihilation operators (A. 

Nininahazwe, 2013) have been constructed. 

 

In another work (Y. Brihaye et al., 2007), PT-

symmetric, QES 22 -matrix Hamiltonians are 

analyzed with the emphasis set on the reality 

properties of the eigenvalues. The authors 

considered both trigonometric and hyperbolic 

22 -matrix Hamiltonians. A set of necessary 

and sufficient conditions (i.e. QES conditions) for 

22 -matrix operators to preserve a vector 

space of polynomials have been proposed. These 

QES conditions constitute the so-called QES 

analytic method. We construct this new example 

of Hamiltonian in order to put out another method 

used to prove the quasi-exact solvability property.  

 

This paper is organized as follows: In the section. 

2 based on the Refs. (Y. Brihaye et al., 2007; A. 

Nininahazwe, 2013), we briefly recall the QES 

analytic method used to investigate the quasi-

exact solvability of 22 -matrix operators. In 

section.3, along the same lines as in the Refs. (Y. 

Brihaye et al., 2007; A. Nininahazwe, 2013), we 

apply the QES analytic method in order to 

construct a new 22 -matrix QES Hamiltonian 

depending on Jacobi elliptic potential. We will 

consider two values of the constant : the case 

1  and the case 2 , the interest results 

will be Computed.  

 

2. QES Analytic Method  
Taking account to the same lines as in the Refs. 

(Y. Brihaye et al., 2007; A. Nininahazwe, 2013; 

A. Nininahazwe, 2020), we recall a general 

method to check whether a 22 -matrix 

differential operator H (in a variable x ) preserves 

a vector space whose components are 

polynomials.  

Consider the 22 matrix Hamiltonian of the 

following form (Y. Brihaye et al., 2007; A. 

Nininahazwe, 2013; A. Nininahazwe, 2020): 

  

























)(

)(

222

2

112

2

xV
dx

d
x

xxV
dx

d

H




  (1)    

                                                   

where:   

















)(

)(
)(

22

11

xVx

xxV
xV





, 2,1,0 , 

  1 , 
xxV )(12 , 

  xxV )(21  

 

)(xV  is the potential associated to the 

Hamiltonian H given by this above relation (1). 

 

A gauge transformation and a change of variable 

on the Hamiltonian H  lead to the following 

Hamiltonian called the gauge one 

 

 HH 1~                                                    (2) 
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which can be written in his components as 

follows: 

 

101

~~~~
 HHHH                                     (3)                                                                                                                                                                   

More precisely, the diagonal components of 1

~
H  

are differential operators and the off-diagonal 

components  
121

~
H  and  

211

~
H are respectively 

proportional to x and  x .  The operators 0

~
H  

and 1

~
H have lower degrees in all their 

components than the corresponding components 

in 1

~
H . Note that the invariant vector space of the 

Hamiltonian H
~

 has the following form (Y. 

Brihaye et al., 2007; A. Nininahazwe, 2013; A. 

Nininahazwe, 2020; A. Nininahazwe, 2018): 



















n

n

q

p
W ,                                               (4) 

1 nm , 𝑚 ∈ ℕ                                                  

 

In order to obtain the QES conditions for H
~

, the 

generic vector of the above vector space is of the 

form 

 
























 




nn

nn

xx

xx

1

1

0

1

10
,                    (5)                                                                                   

 

where ii  ,  1,0i  are complex parameters. 

As a consequence the 22 -matrix 011 ,
~

, MMM  

are defined by: 

 

  
























0

0

1

21

1

0

0

1 ,
~







 


Mxxdiag

x

x
H nn

n

n

, 

  



























1

1

1

1

1

1

1

1

~
,

~







 


Mxxdiag

x

x
H nn

n

n

, 

  
























0

0

0

1

1

0

0

0 ,
~







 


Mxxdiag

x

x
H nn

n

n

    (6) 

 

The three necessary and sufficient QES 

conditions for H
~

 to have an invariant vector 

space are  

 

i) 

















0

0

0

0

1



M , 

ii) 

















0

0~

0

0

1


t
M , 

iii)





























0

0

0

00

11







M .                               (7)                                                                                       

 

In the next step, we will apply in a same lines of 

this QES analytic method in order to prove the 

quasi-exact solvability of the 22 -matrix QES 

Hamiltonian associated to Jacobi Elliptic 

Potential. 

 

3. QES Jacobi Hamiltonian 
 

3.1. Case δ = 1 
In this section, we apply the QES analytic method 

established in previous section to check whether 

the 2×2-matrix operator is quasi-exactly solvable. 

We consider the 22 -matrix Hamiltonian 

depending on the Jacobi elliptic potential of the 

form (Y. Brihaye et al., 2007; A. Nininahazwe, 

2013; A. Nininahazwe, 2020): 

ID VV
dz

d
zH  22

2

1)(                             (8)                                                                                                                                                                              

with  

   21

2 ,, aadiagkzsnVD   21,bbdiag  ,    

DV


















basn

basn

2

2

1

2

0

0
                    (9)                                                                                                                                              

                                             

and 
21  is the matrix identity , ,,,, 2121 bbaa   

denote  real constants and 
IV is symmetric off-

diagonal matrix of the form  

 











0

0
)(

sndn

sndn
zVI




                           (10)                                                                              

 

Note that the above Hamiltonian is to be 

considered on the Hilbert space of periodic 

functions on [0, 4K(k)].  

Note that the sum 
ID VV   is the potential 
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associated to the Hamiltonian H(z) . 

 

Using the following change of function (i.e. the 

gauge transformation), the gauge Hamiltonian is 

written as follows: 

 

hzHhzH )()(
~ 1 ,                                                                                                  
















2221

1211
~~

~~

)(
~

HH

HH
zH                                (11)                                                                                                                                                                                                               

where   

bsna
h

h

dz

d

h

h

dz

d
H 





 2

1

1

1

1

1

2

2

11 2
~

, 

2

12

~
dnH  , 

2

21

~
snH  , 

bsna
h

h

dz

d

h

h

dz

d
H 





 2

2

2

2

2

2

2

2

22 2
~

 (12)                                                                                                                                                                                                              

and 











2

1

0

0

h

h
h , 











),(0

0),(

kzdn

kzsn
h                                (13)                                                                                                                                                                                                                                                      

 

The relevant change of variable consists in posing  

),(2 kzsnt  .  

Taking account to the reference (A. Nininahazwe, 

2013; A. Nininahazwe, 2020), the differential 

symbol 2

2

dz

d
 has the following form 

dt

d
tktk

dt

d
tktt

dz

d
)1)1(23(2)1)(1(4 222

2

2
2

2

2


 (14)   

 We recall that for generic values of k , the Jacobi 

functions obey the following relations (A. 

Nininahazwe, 2013; A. Nininahazwe, 2020): 

122  sncn   ,                                   

1222  snkdn  

cndnsn
dz

d
  ,                                     

sncndnsn
dz

d
22   

sndncn
dz

d
 ,                                   

sncnkdn
dz

d 2                                        (15)                                                                        

    

The following identities are used to establish the 

gauge Hamiltonian (11) in the variable 

),(2 kzsnt   (A. Nininahazwe, 2013; A. 

Nininahazwe, 2020): 

 

h                                
h

h 
                                                                 )(sncndn

h

h
 

1                                  0                                                                  0  

sn                                  )1(2 22 ktk                                              1)1( 222  tktk  

cn                                   12 2 tk                                                        ttk 22  

dn                                    222 ktk                                                     tktk 222   

cndn                               )1(6 22 ktk                                            tktk )1(2 222   

sndn                              )41(6 22 ktk                                          1)21(2 222  tktk    

sncn                               )4(6 22 ktk                                            
1)2(2 222  tktk

 

sncndn                           )1(412 22 ktk                                          tktk )1(23 222  +1                (16)   



Volume 32 (2022) 09-19                                                                                          NININAHAZWE A. et al. 

 

13 

 

Referring to the above relations (16), for snh 1

, the second term and the third term of the 

operator 11

~
H of the equation (12) are written as 

follows: 

,)(22
1

1

1

1

dt

d
sncndn

h

h

dz

d

h

h 



    

dt

d
tktk

dz

d

h

h
]1)1([42 222

1

1 


 ,       (17) 

22

1

1 12 ktk
h

h



 .                                   (18)                                                     

 

Referring to the same identities given by the 

equation (16), for dnh 2
, the second term and 

the third term of the operator 22

~
H of the equation 

(12) are of the following form:  

                                  

dt

d
sncndn

h

h

dz

d

h

h
)2(22

2

2

2

2





 , 

dt

d
tktk

dz

d

h

h
)(42 222

2

2 


 ,                  (19) 

22

2

2 2 ktk
h

h



                                       (20) 

Considering the change of variable ),(2 kzsnt  , 

the fourth and fifth terms of the components 11

~
H  

and 22

~
H  of the gauge Hamiltonian  H

~
 are 

respectively rewritten as follows:  

 
































bta

bta

bsna

bsna

2

1

2

2

2

1

0

0

0

0
     (21)  

 

Taking account of the change of variable 

),(2 kzsnt   the identities and 1222  snkdn  

lead respectively to new form of the two off-

diagonal components of the gauge Hamiltonian 

given by the equation (12): 

 

 ,
~ 2

12 dnH   

tkH 2

12

~
                                         (22) 

,
~ 2

21 snH 
 

,
~

21 tH 
                                               

(23)  

 

Replacing the terms of the components of the 

Hamiltonian H
~

 given by the equation (12) by the 

expressions (14) and (17)-(23), one can easily 

write (in variable t ) the gauge Hamiltonian  as 

follows:

   

 

22

1

222

2

2
2

11 12]3)1(45[2)1)(1(4
~

kbtkta
dt

d
tktk

dt

d
tkttH  ,

)1(
~ 2

12 tkH  , 

tH 21

~
, 

bktkta
dt

d
tktk

dz

d
tkttH  22

2

222

2

2
2

22 2]1)21(25[2)1)(1(4
~

.   (24) 

The next step is to establish the QES conditions 

of the gauge Hamiltonian. In other words, we put 

out the expressions of the real parameters ba ,1  

and .  Let us express the gauge Hamiltonian H
~

 

given by the above relations (24) in its 

components according to  

 

101

~~~~
 HHHH        (25)             
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where: 

 

























tka
dt

d
tk

dt

d
tkt

tktka
dt

d
tk

dt

d
tk

H

)2(104

)2(104
~

2

2

22

2

2
32

22

1

22

2

2
32

1




, 

























bk
dt

d
tk

dt

d
tk

kb
dt

d
tk

dt

d
tk

H
22

2

2
22

22

2

2
22

0

)21(4)44(0

1)1(8)44(
~


, 

























dt

d

dt

d
t

dt

d

dt

d
t

H

240

064
~

2

2

2

2

1                                                                                (26)    

 

As 1 , the generic wave function   given by 

the equation (5) is written as follows: 

 
























..

...
1

10

1

10

nn

nn

tt

tt




                            (27)  

Note that the action of these above three gauge 

components of  H
~

 given by the relations (26) on 

the wave function   given by the relation (27) 

leads to the following expressions:  














n

n

t

t
H1

~
 

















1

1

n

n

t

t
, 














n

n

t

t
H 0

~
 













n

n

t

t
, 














 n

n

t

t
H 1

~
 

















1

1

n

n

t

t
.                                     (28)  

After some algebraic manipulations, one can 

easily obtain the 22 matrices 011 ,
~

, MMM  

respectively as follows (Y. Brihaye et al., 2007; 

A. Nininahazwe, 2013; A. Nininahazwe, 2020): 

 

   























0

0

1

11

0

0

1 ,
~








Mttdiag

t

t
H nn

n

n

, 

  

























1

1

11

1

1

1

1

~
,

~








Mttdiag

t

t
H nn

n

n

, 

  






















0

0

0

0

0

0 ,
~








Mttdiag

t

t
H nn

n

n

.      (29)       

Taking account to these above expressions given 

by the equation (29), one can easily find the 

following matrices:  




















2

2

22

22

1

22

1
210)1(4

210)1(4

kanknnk

kkanknnk
M




,  




















2

2

22

22

1

22

1
2)1(10)2)(1(4

2)1(10)2)(1(4~

kanknnnk

kkanknnnk
M





 




















bknkknn

kbnkknn
M

222

222

0
)21(4)44)(1(0

1)1(8)44)(1( 
       (30) 

  

 

Taking account to the above relations (7), the 

three necessary and sufficient QES conditions for 
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the operator H
~

to have a finite dimensional 

invariant vector space vector are obtained:  

 

i) The first QES condition is:   



















0

0

0

0

1



M   , 

0det 1 M ,   

 

 

  
2

21
21

24

22232422

2644

24524816

k

aa
aannk

nknknknk




  (31)     

 

ii)  The second QES condition is as follows: 

 

,0
~

det

,
0

0~

1

0

0

1





















M

M
t





 

1

~
det M [ 2

1

22 2)1(10)2)(1(4 kanknnnk  ] 2

2

22 2)1(10)2)(1(4[ kanknnnk  ] 22k  

 

In this above equation replacing 2 by its value 

(31) and after some algebraic manipulations, the 

second QES condition is obtained: 

 

14

42122432 22

222232

1





n

anaknknknk
a    (32) 

 

 

iii) The final and the third QES condition is 

computed as follows 






























0

0

0

00

11







M ,                                      (33) 

where is a constant and  

2

2

1

222

0

0 264

k

kanknk



 
                  (34) 

Referring to the expression of the matrix 0M

given by the equation (30) and the relation (34), 

the relation (33) leads to the following third QES 

condition: 

2

1

2222

2

24

k

aknknk
b


                           (35)    

Taking account to the above QES conditions 

given by the equations (31), (32) and (35), we can 

conclude that the Hamiltonian H
~

(therefore H ) 

is quasi-exactly solvable (Y. Brihaye et al., 2007; 

A. Nininahazwe, 2013; A. Nininahazwe, 2020). 

In other words, a finite part of the spectrum of the 

Hamiltonian H
~

can be computed algebraically. 

3.2.   Case δ = 2 
Along the same lines applied for the previous case 

(i.e. for the case δ = 1), we perform a gauge 

transformation according to  

 

rzHrzH )()(
~ 1 ,                                                                             
















2221

1211
~~

~~

)(
~

HH

HH
zH                                    (36)   

with 

      









2

1

0

0

r

r
r  ,     ,1 cnr    sncndnr 2

, 











sncndn

cn
r

0

0
,           





















sncndn

cnr
1

0

0
1

1
,     

After gauge transformation on the Hamiltonian 

H given by the equation (8), the components of 

the above Hamiltonian H
~

of the relation (36) are 

written as follows                                                                                     

bsna
r

r

dz

d

r

r

dz

d
H 





 2

1

1

1

1

1

2

2

11 2
~

, 

22

12

~
dnsnH  , 

21

~
H , 
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bsna
r

r

dz

d

r

r

dz

d
H 





 2

2

2

2

2

2

2

2

22 2
~

  (37) 

 

Referring to the table of identities given by the 

equation (16), the second term and the third term 

of the component operator 11

~
H  (37) are of the 

following form 

-
dt

d
sncndn

r

r

dz

d

r

r
)(42

1

1

1

1





, 

dt

d
tkt

dz

d

r

r
)1(42 2

1

1 


 ,                     (38) 

 

12 2

1

1 


 tk
r

r
                                        (39) 

with    cnr 1 . For sncndnr 2 , taking 

account to the same identities (16), the following 

second and the third terms of the component 

operator 22

~
H  given by the relation (37):  

 

dt

d
sncndn

r

r

dz

d

r

r
)(42

2

2

2

2





   

dt

d
tktk

dz

d

r

r
]4)1(812[2 222

2

2 


 ,     (40) 

)1(412 22

2

2 ktk
r

r



 .                            (41) 

Referring to the change of variable ),(2 kzsnt  , 

the fourth and fifth terms of the components 11

~
H  

and 22

~
H  of the gauge Hamiltonian  H

~
 given by 

the relation (37) have the following form: 

 
































bta

bta

bsna

bsna

2

1

2

2

2

1

0

0

0

0    (42) 

 

Taking account to the change of the variable

),(2 kzsnt   and the relations, 1222  snkdn

, the off-diagonal component 12

~
H of the gauge 

Hamiltonian H
~

given by the relation (38) is 

written as the follows: 

  
22

12

~
dnsnH  , 

)1(
~ 2

12 tktH                                            (43) 

 Note that the off-diagonal component 21

~
H of the 

gauge Hamiltonian  H
~

 given by the relation (38) 

keeps the same expression  

21

~
H                                                        (44) 

 

Replacing the four components of the gauge 

Hamiltonian )(
~

tH  given by the equation (37) by 

the expressions (14) and (38)-(44), one can easily 

found their final form in variable t :  

  bktka
dt

d

dt

d
tk

dt

d
tk

dt

d
tk

dt

d
tk

dt

d
tH  22

1

222

2

2
32

2

2
22

2

2

11 122)48(104)1(44
~

 

22

12

~
tktH   , 

21

~
H , 

2

2
32

2

2
22

2

2

22 4)1(44
~

dt

d
tk

dt

d
tk

dt

d
tH 

dt

d

dt

d
tk

dt

d
tk 6)1212(18 222     tka 2

2 12 bk  244      (45) 

 

 

 

Note that the generic element of the invariant 

vector space V  for 2  is given by the 

equation (5) as in the QES analytic method: 

 

 
























 




nn

nn

tt

tt

1

1

0

1

10 , 
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






















2

1

1

0

1

10

nn

nn

tt

tt




                         (46) 

 

Recall that the action of the gauge components of 

H
~

on the generic function    given by the 

relation (46) leads to the following expressions:  














11

~
n

n

t

t
H  












 

n

n

t

t 1

, 














10

~
n

n

t

t
H  













1n

n

t

t
, 














 11

~
n

n

t

t
H  

















2

1

n

n

t

t
.                                     (47)     

Referring to the above expressions (47), the three 

components of the gauge Hamiltonian H
~

 are 

deduced  

























tka
dt

d
tk

dt

d
tk

tktka
dt

d
tk

dt

d
tk

H

)12(184

)2(104
~

2

2

22

2

2
32

222

1

22

2

2
32

1





























bk
dt

d
tk

dt

d
tk

tb
dt

d
tk

dt

d
tk

H

)1(4)1(12)1(40

1)2(4)1(4
~

22

2

2
22

2

2

2
22

0



























dt

d

dt

d
t

dt

d

dt

d
t

H

640

24
~

2

2

2

2

1


                                                                                        (48)      

As it is shown by the relation (47), the above 

operators 01

~
,

~
HH and 1

~
H  are respectively the 

matrix operators which increases, preserves and 

reduces the degree of the generic element   

given by the equation (46).  As a consequence the 

vector H
~

 can be decomposed as follows: 

 

      

























 

0

0

0

1

1

1

1

1

0

0

1

1 ,
~

,,
~












 MttdiagMttdiagMttdiagH nnnnnn                   (49) 

 

where the constant 22 -matrices 11

~
, MM  and 0M can be computed explicitly after a some calculations 

  
























0

0

1

1

1

0

0

1 ,
~








Mttdiag

t

t
H nn

n

n

 
 

where: 

 

 




















2

2

22

22

1

22

1
12)1(18)2)(1(4

210)1(4

kanknnk

kkanknnk
M





 
  

One can easily deduce the matrix 1

~
M  from the following expression 
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  



























1

1

1

1

2

1

1

1

1

~
,

~








Mttdiag

t

t
H nn

n

n

 
 

where:  




















2

2

22

22

1

22

1
12)2(18)3)(2(4

2)1(10)2)(1(4~

kanknnk

kkanknnk
M




 

Finally the third matrix 0M  is easily found as follows:   
























0

0

0

1

1

0

0

0 ,
~








Mttdiag

t

t
H nn

n

n

 
where: 

 




















bknknnk

kbknnnk
M

222

222

0
44)1)(1212()2)(1)(44(0

1)2(4)1()44(   

 

 

Referring to the three QES conditions given by 

the relations (7) of the QES analytic method and 

to the expressions of the previous three 22 -

matrices 11

~
, MM  and 0M  , one can easily 

compute algebraically the three necessary and 

sufficient conditions for the gauge Hamiltonian 

H
~

 given by the expressions (45) to be quasi-

exactly solvable as follows: 

 

i) the first QES condition is as follows 

0det 1 M , 

 

   
2

212

2121

22342

4232

16524816

k

aa
kaaaan

knnnn





  (50) 

ii) the second QES condition is easily checked 

 

nkk

anknknknk
a

22

2

222232

1
838

)14(2122432




 (51) 

iii) Finally the third QES condition is found 

2

1

2222

2

104

k

aknknk
b


       (52)  

4. Conclusion 
 

In this paper, we have applied the QES analytic 

method established previously ( Y. Brihaye et al., 

2007) in order to construct a 22 -matrix QES 

Hamiltonian which is associated to a Jacobi 

elliptic potential. We have considered two cases: 

1   and 2 , more precisely, the three 

necessary and sufficient conditions (i.e. the three 

QES conditions) for the Jacobi elliptic 

Hamiltonian to be called quasi-exactly solvable 

are computed algebraically. 
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